
Efficient Scalable Temporal Web Graph Store
Khoi Duy Vo1, Sergej Zerr2, Xiaofei Zhu3, and Wolfgang Nejdl1

1L3S Research Center, Leibniz University of Hanover, Hanover, Germany
2University of Bonn, Bonn, Germany

3College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China
1{khoi, nejdl}@l3s.de, 2szerr@uni-bonn.de, 3zxf@cqut.edu.cn

Abstract—Temporal web graphs have been attracting much
attention recently due to their important applications in web
search, data mining, and social network analysis. Accumulated
over long periods, those graphs have grown gigantic in size and
rich in temporal evolution, which poses tough challenges for
data storage and management. Though a few temporal graph
management systems were previously proposed, none of them
can simultaneously satisfy both essential requirements when
retrieving on temporal web graphs: very large data scalability
and very low querying latency.

In this work, we address the above gap in existing works
by developing a highly efficient temporal graph management
system which is dedicated to web graphs. To this end, we greatly
extend the most efficient framework for managing large static
web graphs to handle temporal information using the property
matrix while preserving most of the outstanding features of the
base framework. Ultimately, our proposed system can achieve a
nearly instant response for vertex-centric temporal retrieval while
still being scalable to huge datasets. Experiments on a real-world
dataset with more than 43B nodes and 317B links show that using
a small non-dedicated cluster, our system can reach a reduction
of data storage space up to 88% of raw data size and reduce
the retrieval time by 20%, compared to the baselines. We also
demonstrate that our system also yields a significant reduction
of computational costs for many graph ranking algorithms.

Index Terms—temporal graph representation, graph index,
archival search, compression, distributed system

I. INTRODUCTION

Graph storage and analysis have been core subjects in many
research areas, including machine learning, web search, and
social network analysis. Efficient systems for managing and
data retrieval with large graphs are therefore highly demanded.
Developing such a system has been attracting much research
in recent years, e.g. [1]–[11].

Among different types of graphs, the ones resulted from the
temporal evolution of the web pose even more challenges to
manage due to their large size and constant evolution. In such
graphs, meaningful analysis is only possible when utilizing
the graph at the states as it was found at the interesting time
points. For example, in Fig. 1, we show a temporal web
graph which is much more complicated than its static version.
In addition to scalability, this complication further requires
managing systems to be able to provide temporal retrieval
functionalities with very low querying latency [7], [12]–[14].

Let take Internet Archive*(IA) as an example. As the vast
storage of past knowledge, IA is among the biggest temporal

*https://archive.org/

Fig. 1: An example of a web graph (upper) and its complica-
tion over time (lower)

datasets and has also been attracting attention in various
research fields. Unfortunately, even advanced models and en-
gines are incapable of handling data sizes at that scale with low
latency. As a consequence, extracting temporal information
from IA remains a challenging and time-consuming task.
Several works suggest overcoming the scalability problem by
applying algorithms such as HITS and PageRank on temporal
web graphs extracted from archives to improve the ranking
of the search results without knowledge about the content by
employing such graph information [15], [16]. However, these
works did not tackle the temporal dimension and have to resign
in front of the graph evolution problem.

Deal with the above graph evolution problems, there ex-
ists a trade-off between scalability and latency, since high
scalability requires compact data in memory and storage,
whilst low latency prefers less compressed data to reduce
computation. From one side, many attempts [3], [7], [17]–[22]
were concerned with the scalability of the graph and focus on
compacting graph representations that fit well in storage and
main memory, on the cost of latency. On the other side, graph-
based retrieval approaches typically focus on building efficient
data retrieval structures, but lack scalability [10], [11], [23]–
[25] showed in their experiment. There are very few existing

https://archive.org/

works that address both scalability and latency in working with
temporal graphs [11], [25]. These works, unfortunately, require
specific information and context, e.g., user profile graph or
map graph, thus can not be directly applied for temporal web
graphs.

In this paper, we, therefore, would like to address this gap
in existing works. Specifically, we propose a highly efficient
storage management system with enhanced data structure and
build-in methods that are optimized and balanced for both
scalability and latency and can simultaneously master the time
dimension. Our approach is based on the existing Scalable
Hyperlink Store [2], which is the most efficient distribution
system that inherits the partitioning, mapping, encoding, com-
pacting, compressing features to deal with scalability and
latency requirements. Our work can also be directly applicable
for scatter-gather algorithms such as HITS, SALSA, WCC,
SCC, and similar algorithms [3], [5], [26]–[28]. Experiments
on diversified real-world temporal web graphs prove the ef-
ficiency of our approach on large temporal web graphs. In
summary, the main contributions of this work are as follow:

• Formulation: We present a temporal graph storage model
represented by adjacent lists and adjacent pairs, which is
capable to store temporal information.

• Functionality: We provide a solution to optimize in-
dex/retrieval operation on both scalability and latency
of large-scale temporal web graphs. The performance of
the system shows improvement over the ad-hoc temporal
enhancement of state-of-the-art vertex-centric static graph
management systems.

• Praxis: Our approach is built and evaluated on a large
scale temporal web graph extracted from a German Web
Archive with more than 43 billion nodes and with a total
of 317 billion revision edges. Since there is a lack of
similar system in temporal web literature, we empirically
analyze the performance of the system using the follow-
ing two methods: (1) Measure the system with respect to
different characteristics such as reliability, durability, and
robustness. (2) Measure the system in a real context using
some stressful algorithm applications: HITS and SALSA.

The paper is organized as follows: We briefly review closely
related work Section II. Next, we give an overview about
state-of-the-art studies in static web graphs in Section III,
which is the base of our work. We then present our work in
Section IV, followed by the algorithm complexity is analyzed
in Section V. Section VI presents the evaluation methodology
and experimental results on the functionality and practicability
of our work. Finally, in Section VII, we discuss the strengths
and drawbacks of the proposed system based on evaluation
results and identify future research questions.

II. RELATED WORK

In graph data management, optimization of both scalability
and latency simultaneously is a non-trivial task since improv-
ing one may hurt the other. In this section, we will identify
the priorities of recent studies in this context and then analyze

the approaches and procedures to optimize these problems by
considering their objectives and data domains.

A. Static graph

To address the latency requirement, Khandelwal et al. [10]
suggested a flat representation and additional operations (e.g.,
to build skip pointer lists and distribute the graph across
servers) to index graphs by combining vertices and edges. This
representation enables the compression of the input graph to
be fitted into the main memory, and the retrieval engine can
directly manipulate it. This work is reported to achieve state-
of-the-art latency on graphs of moderate size. However, its
performance on large graphs is not examined. Later Claude et
al. [23] proposed to split the graph into primary and secondary
memory. As a result, their system can be distributed and is
scalable to graphs with 5B edges.

For dealing with the scalability requirement, Labouseur et
al. [8], Malewicz et al. [3] proposed a distributed framework
to support large-scale graph processing. Later, Mai et al. [20]
and Zou et al. [21] proposed different frameworks based on
GrapLab [4]. These frameworks, however, do not deal with
the latency requirement. Other existing works address the
scalability in the context of some specific applications. They
are mostly designed to optimize particular operations on index
data. For example, Kabiljo et al. [18] focused on partitioning
the indexed data of large hyper-webgraphs without considering
the real-time latency. Fang et al. [17] proposed to cluster
graph for faster communities retrieval. In another different
attempt, Kruse et al. [28] built a graph engine to support
exploration and analysis on user networks. Since tailored to
specific applications, these methods are inapplicable to our
problem and data domain.

From the view of data priority, most of the work in web
graph falls into one of the two categories during the indexing
phase as the study of Roy et al. [5]: either (1) Vertex-centric:
the graph is indexed by vertices to support vertices’ and their
adjacent vertices’ retrieval, or (2) Edge-centric: the graph is
indexed by links to supporting links target retrieval. A few
works tried to combine several data such as vertices, edges,
and their properties in indexing [6], [10] on a powerful single
server thus cannot handle at such scale graphs as in our work.

Another approach in scaling up the graph management
system is to improve internal operations during the indexing
phase to reduce expensive computation or storage costs. For
instance, Buehrer et al. [29] propose a compression method
dedicated to graph indexing. Again, this study can significantly
improve the compression rate, but ignorance of on-the-fly
latency in its experiments.

B. Temporal graph

The latest studies in temporal graph developed by Nelson
et al. [22] compressed full graph capture at a particular times-
tamp using 3-Dimension matrices to annotate the presence
of a node in that capture. Though the work can have good
compression ratios at small scales, the 3-D matrices can face
an issue when the graph becomes gigantic and spans a very

long duration. Moreover, this work can not deal with sparse 3-
D matrices which hurt the compression ratio when the captures
are collections of small subsets of the whole graph at a
particular timestamp.

Among the most recent studies, there is the work of Ma
et al. [11], which modeled the input temporal graph as a
collection of snapshots at different timestamps and indexed
the graph nodes based on their connectivity to other nodes.
This work, however, did not handle sparse temporal graph and
required an expensive preprocessing step for measuring nodes’
connectivity, hence can not be scalable to the large graph.

Another system named Chronos [6] is handling tempo-
ral graphs through partitioning edges based on their time-
locality. The study also aimed to support scatter-gather model
algorithms. However, experiments on the very large graph
were reported as unsuccessful tasks. In the same approach,
ImmortalGraph [7] had multiple aspect analyses on time and
structure-locality, and then applied into different datasets.
However, on-the-fly latency was not the target of the author
in this research.

The last one is from Moffitt et al. [30] to provide a similar
solution to distribute a large web graph to many servers. The
proposed solution, however, did also not focus on on-the-fly
latency, thus can not be applied in our research context.

C. Web graph processing

There are very few previous works that are tailored for
web graphs. Brisaboa et al. [24] first proposed a K2 tree
structure for a compressed representation of the graphs. This
method, however, can handle various graphs up to moderate
size. Najork [2] applied multiple techniques to achieve both
latency and scalability and gained significant improvements
on large graphs. This work can also well balance scalability
and latency to achieve the state-of-the-art performance on 6B
nodes graph. It motivates us to build enhancement.

In fact, web graphs have the unique characteristic that is not
well explored. For example, each vertex is actual an URL with
specific properties (e.g., string, web domain, path, and name
of the page), which are not used by existing general graph
approaches. It is worth notice that there are several effective
works on the web graph domain, but none of them cover the
time dimension of the web graph except the work from Boldi
et al. [12], which just aimed to crawl a temporal web graph
dataset for analysis.

In comparison to previous related works, we are the first
to tackle scalability and latency problems for graph storage
simultaneously and provide a solution for the temporal web
graph retrieval problems that can handle gigantic graphs while
maintaining state-of-the-art latency.

III. SCALABLE HYPERLINK STORE - SHS

In this section, we briefly describe the Scalable Hyperlink
Store (SHS) [2], which is the base for our contribution. Graph
Data Structure. SHS employs a vertex-centric data structure
for web graphs. Specifically, a web graph in SHS is a directed
graph with G = 〈V,E〉 where V is the set of URLs, each

identifies a web page, and sorted by alphabet order on their
domain name, and E is the set of (hyper) links between these
pages. The system maintains a data store U that contains
indices of all vertices v ∈ V based on a hashing function on its
domain name. In addition, for each vertex v ∈ V , the system
maintains two stores of adjacency lists: out-link (also called
forward link) and in-link (also called backward link) list. Each
i-th element in each list is an identifier of a vertex having links
from and to v, represented by dvi , respectively, as illustrated
by example in Fig. 2. The web graph hence is represented as
a triple of sets G = 〈U,F,B〉 where F and B are the set of
vertices’ forward and backward links, respectively.

Fig. 2: Example of forward/backward link list: uv is id of
vertex v, udv

i
is id of i−th vertex in the list.

Graph Indexing Operations. These operations consist of
partitioning, distributing at indexer client, then encoding, neg-
ative number removing, compacting, compressing, and storing
on to persistent storage at each responsible server. For detail,
the graph G = 〈U,F,B〉 is partitioned by the hash function
that works on the vertices’ index in U . Each partition is then
distributed to a responsible server p. The value p and vertex’s
status(e.g. normal or deleted), together with index of v are
embedded into an 64 bits number as a vertex’s identifier uv .
Precisely, vertex v is assigned to server p as follows:

p = hash(v) mod N (1)

In Eq. 1, N is the number of servers involved, and also the
number of partitions. The p-th server is now responsible for
the partition consisting of all vertices assigned to p and their
forward and backward link list. We use Gp = 〈Up, Fp, Bp〉 to
denote the partition assigned to server p.

At each server p, each element dvi in forward and backward
link list of vertex v are replaced by udv

i
. This list is then en-

coded by gap-encoding (delta-encoding), negative number (as
result of gap-encoding operation) removing, then compacting
by removing unused bits in number [13]. Finally, all three sets
Up, Fp, Bp are compressed by Variable Nybble Compression
method [2], [13] and stored on disk. Fig. 3 illustrates these
steps, in which figure a) shows mapped (v ⇒ uv) adjacent
list; figure b) shows gap-encoded of figure a); and figure c)
show negative removed adjacent list of figure b).

Graph Retrieval Operations. Current SHS provides opera-
tions to retrieve adjacent list(s) of given vertices. Each vertex v
in a query is assigned to its responsible server by recomputing
partitioning function (Eq. 1) to retrieve the attached links.
At the responsible server, all compressed indexed data of
Gp = 〈Up, Fp, Bp〉 are loaded into memory. It is worth notice
that the loaded data may be very large in memory. Though data
traversal on memory is fast, it still hurts the latency when the
data size is too large. To reduce this cost, skip pointer lists [13]
is built for all store cells Up, Fp, and Bp with k elements in
each block to skip inattention blocks during traversal phase.

Fig. 3: Operations on adjacent lists: a) Mapping uv to URLs.
b) Gap-encoding. c) Remove negative numbers.

IV. APPROACH

We now describe our proposed extension for SHS [2] to
handle temporal dimension of web graphs. The enhancement
is basically done by embedding temporal dimension into
the graph representation (Fig. 4) and enabling supporting
operations. Our contribution is based on a novel bitwise-based
data structure and operations, which were proved the efficiency
in [34] to maintain the small latency of original SHS highly.

Specifically, we propose a novel temporal model, which
employs a matrix to store the temporal evolution data. We
explain how to implement and optimize it in SHS using
the bitwise approach of the new model. The new temporal
model has two implementation data structures capable of
handling vertices at different density levels of link degree. We
discovered that the majority of the processes in the temporal
dimension of web graphs are the two fundamental operations.
Hence we implement these two operations using bitwise-
based calculations as the basic functionality of our system.
To this end, we modify some individual workflow tasks in the
indexing operations that drastically reduce the operation time
compared to the original workflow.

Our solution elaborates on temporal dimension while keep-
ing original high optimizations in both scalability and latency
as the most crucial factors for efficient information retrieval in
large and evolving graphs. Based on our extension, the system
can rapidly extract adjacent nodes that appeared within two
timestamps in large graphs to execute many fundamental graph
algorithms (e.g., HITS and SALSA) efficiently at that scale
while highly maintaining state-of-the-art latency from original
work.

A. Temporal model as bit matrix

There are different types of temporal web graphs that need
to be considered separately, depending on the initial crawling
strategy. Some graphs are tracked and updated by the link
evolution, while others are collections of captures of the whole
graph at different timestamps. All aforementioned crawling
strategies have drawbacks when crawling large-scale graphs

Fig. 4: Captures of source vertex v and destination set at given
captured timestamps.

Fig. 5: A linked list from Fig. 2 enhanced with temporal
information.

due to delays in processing and thus the inability to capture
the whole graph at a particular timestamp. Instead, typically
the crawling of smaller sub-graphs at different timestamps is
applied. Each vertex in such a temporal graph is a URL of
a web page with a timestamp, called a capture. This type
of graphs is also our primary concern dataset in this work.
In this subsection, we aim to handle the temporal data of
the vertices, which contain a few changes in all snapshots
of different timestamps.

Formally, a temporal web graph is a directed graph GT =
〈V,E, T 〉 where V =

{
v0, v1, ..., v|V |−1

}
is the set of URLs,

and have corresponding identifier vi = i; T is the set of all
captured timestamps of the pages and E ⊆ (V × T × V)
is the set of links to or from the captured vertices. For each
vertex v in the graph, we use the set Tv =

{
t0, t1, ..., t|Tv|−1

}
to denote the timestamps when v is captured. Fig. 4 also
illustrates all captures of vertex v with s = |Tv| − 1, and out-
link list of each capture, while Fig. 5 represents a capture at
a given timestamps ti of vertex v, which has out-link vertices
set Dvi = {x|〈v, t, x〉 ∈ E, t = ti}. Therefore the out-link set
of vertex v over time is Dv =

⋃
Dvi . All related data of a

vertex v can be represented as an Eq. 2 in which Mv is a
similar representation as a presence matrix [22] or a property
matrix [31] of the only node v in binary-value form Mv as in
Eq. 3. We then call Mv as bit matrix.

aTv = 〈v, Tv, Dv,Mv〉 (2)

Mv =


e0,0 e0,1 ... e0,n0

e1,0 e1,1 ... e1,n1

...
e|Tv|−1,0 e|Tv|−1,1 ... e|Tv|−1,|Dv|−1

 (3)

In which ei,j is indicated by:

ei,j =

{
1 if 〈v, ti, djv〉 ∈ E
0 if 〈v, ti, djv〉 /∈ E

(4)

Analogously, the temporal web graph model can be repre-
sented as follows

GT = 〈U,F T , BT 〉 (5)

where U are still URL set, and F T , BT are forward and
backward link stores of temporal adjacent lists, respectively.

Consider an example with a given vertex v having 3 captures
at three timestamps Tv = {t0, t1, t2}. These captures contain
a set of out-links vertex Dv = {d0, d1, ...d9}. Each capture
contains a subset of Dt ⊆ Dv , with t ∈ Tv . Fig. 6 illustrates
the matrix Mv of this example. The presence of vertex dv ∈
Dv of any given capture is indicated by bit 1.

Fig. 6 shows that the scarce of change in temporal snapshots
of a vertex can lead to a high-density bit matrix Mv because
most of the different rows in bit matrix can contain the same
number of value 1 at the same columns.

B. Temporal model as adjacent pairs

Although the link evolution of a vertex is small in most
web domains, some of them, such as news or blogs site, show
the opposite and quite volatile behavior. The large difference
values make the matrix Mv sparse. We, therefore, employ
a specific sparse matrix representation for such cases. To
calculate the dense ratio of matrix Mv , given Ev = {ei,j} is
the set of elements in Mv , we calculate the ratio of the number
of existent links over the number of elements in matrix Mv:

pv =
{ei,j ∈ Ev|ei,j = 1}

|Ev|
(6)

Our analysis on a temporal web graph extracted from
Internet Archive [15], [32], [35] shows that it contains around
94% of domain having matrix density pv > 80%. On the
other hand, only 0.6% of vertices have density pv < 40%.
We discover that most of these vertices are very well-known
German News, e.g. "http://bild.de/", "http://spiegel.de/", where
the contents as well as the incoming and outgoing links are
changing rapidly during their lifetime.

Our experiments show that the size of array AMv
can

make the latency longer while querying these domains. There-
fore, we set the threshold = 40%. In case the value of
pv < threshold, we employ a set of adjacent pairs i, j such
that Mv = {〈i, j〉|ei,j = 1} to indicate the existence of the
corresponding links at the interested timestamp. The efficiency
of this implementation will be analyzed in Sec. VI.

C. Temporal web graph store data structure

It was evident that stores compressed two dimensions array
can hurt decompression operations, thus also nfluences latency.
We solve this issue by flattening the matrix into 1-D dimen-
sion. Since the adjacent pairs are flatted, we just flatten Mv

by concatenating the rows into a bit string. The length of the
bit string is left padded to be multiples of 32. Then the bit
string is splitted into multiple 32-bit elements to obtain a 1-D
32-bit number array representation by AMv

. We then replace
Mv by AMv

in Eq. 2. Finally, we obtain a data structure of
aTv as a one-dimension list of numbers of Eq. 7.

aTv = 〈v, Tv, Dv, AMv
〉 (7)

Fig. 7 shows adjacent elements of the example in Fig. 1
with matrix Mv flattened and embedded in each element as

Fig. 6: Example data in Eq. 3. It is depicting a node with 3
captures and 10 total links.

illustrated in Fig. 8. In Fig. 9 step 1) also shows one adjacent
list in link store, in which Mv is flattened to a bit string. For
example bit matrix Mv in Fig. 8, is implemented by a 32-bit
elements, thus returns an 1-element array AMv = {401} as
the last row of Fig. 9 step 2) result.

D. Skip pointer list
The SHS’s skip pointer list also needs to be enhanced to

adapt to the new graph data structure. Each pointer points to
the starting position of a compressed block of k continuously
temporal elements. As a result, the traversal and decompres-
sion will only happen within a block, hence can save much
computer instructions.

As in the previous section, each element aTv (Eq. 7) will
be completely flattened and represented by a numeral array.
However, the array’s size can be very large and would not be
optimally compressed. We then also employ gap-encoding to
make these numbers smaller. Moreover, it is worth notice that
negative decimal numbers actually utilize all bits of the defined
bit length in computer memory by using 2’s complement
number method, thus also hurts the compression. We then
repeat the steps in SHS to remove negative decimal numbers,
but with a number array AMv . In Fig. 9 step 1) shows how to
apply gap-encoding method to minimize the numbers in the
temporally adjacent lists, and step 2) shows how to remove
the negative numbers to get small values in 2’s complement
binary numbers.

The drawback of gap-encoding is in cases where an element
at the later part of the list has to be accessed. In this case, we
have to traverse the list from the beginning to the necessary
position. In the context of large data, applying gap-encoding
for whole data can have reversed effects and slow down query
execution times.

To address this problem, we enhanced the skip pointer list
in SHS to our new data structure with k elements of aTv . Fig.
10 shows an example encoded data with block size k = 4.
The arrays represented for elements aTv in a block then merge
as a bigger number array, which is the best for compression.
The value of k is very sensitive since if k is too small, the
skip pointer list may be very large, whilst if k is too large, the
retrieval computation will be costly. The value for k is set to
32 as Najork suggested in [2].

E. Temporal neighbors retrieval model
There are several operations proposed in [33], [35] to

address the interest research on temporal graphs. We study

Fig. 7: A logical view of the of temporal graph store cells.

Fig. 8: A data structure representation of Eq. 7 in forward
store cell from Fig. 7.

Fig. 9: Example of temporal enhancement of Fig. 3.

these kinds of operations and found that they constitute from
two fundamental query types:

Merge query to request a mergence of connected (back-
ward/forward) vertices appeared within the a given time inter-
val [ta, tb] from all captures of a given vertex v.

IDir
v[ta,tb]

=
{
x ∈ Dv|t ∈ Tv[ta,tb] ∧Mv [t, x] = 1

}
(8)

Temporal snapshot query to request the connected (back-
ward/forward) vertices of the latest capture of a given vertex
v within the given time interval [ta, tb].

SDir
v[ta,tb]

=
{
IDir
v[ti,ti]

|ti ∈ Tv[ta,tb] ∧ ti = max
(
T[ta,tb] \ {tb}

)}
(9)

Using these two queries above, we can build any composi-
tion variations to support the most complicated demands. For
example, to request the vertices appear within the given time
interval, a combination of above queries is depicted in Eq.
10. It is worth notice that Dir ∈ {Forward,Backward} is
the direction of request, corresponding with {F T , BT }, which
identifies the link store that the query aims to seek in.

It is worth noting that the queries above consider the
ID of vertices in query content. Therefore, one supporting
function to find the mapping from vertex to ID and vice versa
is implemented. This function is also important and affects

Fig. 10: Temporal store cells blocks with k = 4.

latency. As a consequence, we also evaluate this function
latency to verify our proposed data structure.

EDir
v[ta,tb]

= IDir
v[ta,tb]

\
{
IDir
v[t0,ta]

}
(10)

F. Implementation

Architecture. We reuse the architecture built for SHS,
and enhance the internal implementation in each server. The
enhancement consists of partitioning method, data structure,
and network communication. In detail, we implement our
extension in two processes:

Indexing process. We also improve the indexing steps.
More detail, instead of partitioning on-the-fly as SHS, we
partition the graph on Hadoop and then simultaneously send
the partitioned datasets to corresponding responsible server.
Experiments show that this helps to reduces the indexing time
duration of a large graph from 14 days down to 23 hours,
which is about 15 times faster, in comparison with the original
partition on-the-fly workflow of SHS.

Retrieval process. The retrieval process is executing queries
executions as described in section IV-E with temporal data
structure. In both basic queries (Sec. IV-E), for a given vertex
v, time period [ta, tb], the direction of the request is also
provided.

We also extend more than 50 network communication
protocol messages among the servers in both indexing and
retrieving processes to make them to be capable to transport
temporal data, e.g. extend current protocol to carry the pair of
an edge 〈vsrc, ddest〉 to carry the triple 〈vsrc, ti, ddest〉.

V. COMPLEXITY ANALYSIS

In this section, we analyze the complexity of employed
algorithms mentioned in section IV-E with a special focus
on the retrieval as a high-performance feature of the system.
Given a temporal query as format: 〈v, ta, tb〉, there are two

main operations to compute the result. Tab. I shows these
operations and their corresponding proportional times required
for processing.

TABLE I: Operations complexity at partition p

Operations Complexity
Seeking ID of a URL O (lognp + C)
Seeking URL from an ID O (lognp + C)

Retrieve an adjacent list of
v

O
(
lognp +

b+K∑
v=b

|aT
v |+ |Mv|

)

1) Find mapping URL to ID and vice versa. Given
URL store cell Up =

{
uv∈Vp

}
= {0, 1, 2, ...np} where all

vertices v ∈ Vp belong to the partition p, and k = K is
the block size in storage cells, there are two fundamental
operations to exchange ID to URL and vice versa. Both
operation complexities match O (log np + C) as the original
operation in SHS.

2) Retrieve adjacent list from temporal link store cells.
Similarly, this operation needs to examine the skip pointer
list to find the block pointer of interest, then examine the
block to find the requested adjacent list. In the worse case,
the algorithm has to search from beginning to the end of the
interested block and read all data of the adjacent list found;
thus proportional time duration needed to process the operation

matches O
(
log np +

b+K∑
v=b

|aTv |+ |Mv|
)

.

VI. EXPERIMENTAL EVALUATION

A. Evaluation method

To our best knowledge, there has not been other work
on temporal web graph that simultaneously deals with both
scalability and latency. Therefore, we implement two systems
based on well-known frameworks and use them as baselines
to evaluate our system. In particular, we build and then index
4 diversified graphs on our system at different scales on both
data size and system architecture. The resource consumption
in different phases is tracked to evaluate system performances.
We then evaluate the systems on the following aspects:

• Functionality evaluation. We use tracked data of the
indexing process and measure the latency by requesting
many different query types over these diversified datasets
to prove: 1) Scalability of our system. 2) The two im-
plementations of the matrix densities support very small
latency. 3) The effectiveness of the new link store cell’s
data structure is independent of temporal data extension.
4) Finally, we show that our system’s latency outperforms
the implemented baselines on requesting different batch
queries’ sizes from 1000 − 5000 vertices(URLs) over
selected indexed datasets. From our perspective, these
activities are fair because the data size and queries are
in the scope of the baselines.

• Practicability Evaluation. In this evaluation, we first
employ naive temporal HITS and SALSA [26], [27]
to simulate intensive application usage. Then for the
practical application experiment, we install the system on

TABLE II: Detailed properties of graph datasets

Wiki Bing Small_GA German
#Nodes 2,166,669 2,098,796 1,276,554,018 43,061,274,770
#Links 86,337,879 486,259,835 9,440,581,074 317,783,143,013
Duration 2002-2011 1998-2014 1-3/2013 1998-2014
Length 10 years 16 years 3 months 16 years
#Captures 1 - 3240 2 1 - 91 1 - 5840
MaxDegree 394,371 2 2,492,801 66,428,064
Size(GB) 3.7 38.7 1070 21200

our organization cluster for daily research projects use in
6 months and collect user feedback for evaluation.

B. Dataset

It is worth noticing that the link degree and number of
the snapshot of the graph can significantly affect the retrieval
activities. Therefore, we intentionally choose 4 diversified
datasets with different characteristics, as detailed in Tab. II.
We then used them to evaluate the functionality, including the
efficiency and usability of our approach over a wide range of
characteristics of datasets. The details of each dataset are as
follows:

Temporal German Wikipedia Graph. This is a graph
evolution of (hyper)links among German language pages of
Wikipedia † within 10 years. It is small and low average link
degree. For short, we call it Wiki.

Bing Result in German Archive Graph. This is a graph
evolution of (hyper)links among German domain pages (*.de)
within 16 years, which is a 1-hop extension of Bing search
results of 1.7 million Wikipedia entities. We intentionally
process the extended graph to make its maximum link-degree
of each vertex at 2, which means consisting of 2 captures at
the starting and the ending timestamps of each (hyper)link. Its
size is moderate. We name it Bing.

Internet Archive. As the biggest dataset collection about
the past, which also embeds the biggest temporal web graph
among almost web pages within 16 years from 1996-2014. The
evolution of (hyper)links, which connect among the captures
over time, is extracted to form the temporal web graph. In
our work, we use a subset in the Internet Archive collection,
filtered from "*.de" domains and named German Archive.
From German Archive, we extract two different graphs: a
short duration graph within 1-Jan-2013 and 31-Mar-2013,
named Small_GA, at large size; and a full duration graph,
named German, at gigantic size; to compare the latency with
baselines and evaluate the practicability.

C. Baselines

1) Leveraging SHS [2] and time filtering with MySQL.
In the absence of appropriate baselines, we exploit a static
web graph store and an external temporal data management
system to build a temporal web graph management system. In
this experiment, we leverage SHS as a state-of-the-art static
web graph store in our context and MySQL as an external

†http://konect.uni-koblenz.de/networks/link-dynamic-dewiki

http://konect.uni-koblenz.de/networks/link-dynamic-dewiki

database system to store corresponding temporal data. We
choose the dataset Small_GA to index in this baseline due to
MySQL limitation on scale dataset. The indexed dataset for
this experiment is processed in 3 steps: 1) convert the dataset
Small_GA into a static web graph by merging all links in
revisions into one revision. 2) Index that static graph obtains
in step 1 with SHS. 3) We store the original temporal data into
the MySQL database management system using URL mapping
results from SHS. To process results from a time concerned
query, we retrieve all links from SHS and then use timestamps
information to filter out the irrelevant results respecting the
time constraints in the query by requesting time information
from MySQL. Since MySQL is an external system, in this
experiment, we do not take into account resource consumption
measurement except latency.

2) Employ HBase. In this baseline, we make use an HBase
system to store triple 〈v, dv, tv[i]〉 and index data by source
v and timestamps dv to support similar retrieval operations.
HBase is installed on the same 29 multi-tasking shared servers
together with our system. For this baseline, we also measure
only the latency of the operations.

D. Experiment setup

We installed our system on different numbers of multi-
tasking shared servers depended on each experiment. Each
server holds 2 CPUs of various models from Intel(R) Xeon(R)
E5-2620 (v2 - v3 series), which are from 12−24 cores having
128 − 256GB RAM installed. The network communication
among the servers has high bandwidth at 58 Gbps. We also
develop a tracking system to record execution data during the
experiment phases.

To evaluate the system’s functionality, we implement and
measures indexing and retrieving operations using graph Wiki
and Bing datasets onto 1, 2, 4, 8, 16, and 29(limited by in-
frastructure). For indexing operations, we also experiment on
these two graphs to evaluate the stability at different numbers
of servers. For the retrieval operations, we randomly select
either one operation in section IV-E for each query.

To experiment on practicability, we index the German
graph on 29 servers and evaluate the index performance
through resource consumption. The system then acts like a
graph search engine for naive temporal HITS and SALSA to
evaluate system performance and to measure the responsibility
of the system. Please note that we leverage the temporal
version of these algorithms by naive approach, in which
we simply apply Merge operation (section IV-E) to discard
temporal information in given duration [t1, t2] as input of
HITS or SALSA algorithm. It is worth notice that since this
dataset is gigantic, using it to do functionality experiments on
a small number of servers is impossible.

E. Functional experiment results

Scalability. Fig. 11, chart a) and b) show time duration and
the resource consumption respectively of the indexing phase
using Wiki and Bing datasets on different numbers of servers.
It is worth noting that Small_GA and German datasets can

0 10 20 30

250

500

750

1000

1250

1500

1750

2000

2250

Ti
m

e
(s

)
W

ik
i

a) Index time
Index time

0 10 20 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Si
ze

 (G
B)

W
ik

i

b) Resource used
Mapping RAM
Encoding RAM
Files'size

0 10 20 30
server

6000

8000

10000

12000

14000

16000

18000

Ti
m

e
(s

)
Bi

ng

0 10 20 30
server

1.5

2.0

2.5

3.0

3.5

Si
ze

 (G
B)

Bi
ng

Fig. 11: Resource consumption to index Wiki and Bing
graphs on different numbers of server.

TABLE III: Indexing statistics on different graphs

Wiki Bing Small_GA German
Original size (GB) 3.8 38.7 1070 21200
Indexed size (GB) 0.572 5.7 136 3781

% of original 15 14.7 12.8 17.8
Index time (s) 227 6381 52873 1351094

not be indexed on a small number of servers such as 1, 2, and
4 servers due to their huge size, thus we dismiss them in this
experiment. RAM and disk usage are tracked at two phases: (1)
mapping URL to ID and (2) the rest operations. The figures
clearly show that our system is scalable since a) increment
of the number of the servers may reduce indexing time but at
diminishing returns due to the trade-off between computational
and network communication time. b) Consumption slightly
increased for both RAM and storage. Compared with resource
consumption during indexing on 2 servers we found that this
increment is negligible. Tab. III also shows further indexing
data of 4 datasets on 29 servers and also proves the scalability
due to moderate resource consumption while keeping a high
compression rate.

Latency. Because the data stores F T and BT have struc-
tural similarity (Eq. 7), we evaluate the latency on Merge and
Temporal Snapshot (Sec. IV-E) requests. The performance is
assessed in three concerning purposes:

• Baselines comparison. We define latency as Eq. 11:

latency =
duration

#links
=

1

throughput
(11)

to measure the average time to retrieve a link, which is
the inverse of throughput [36]. The latency of our system
is compared with two baselines using the exact query
requests on each system, which is handling the indexed
data of Small_GA dataset. Since German is too large
and the others are too small to run on the baselines,
Small_GA is the best. Fig. 12 a) shows the latency

on dataset Small_GA of identifier-to-identifier (UID-2-
UID) retrieval operation, which does not include time to
map an URL to a number and vice versa. Fig. 12 b) shows
the string-to-string experiment results in which the input
and output are URLs.

1000 2000 3000 4000 5000
Query size

0

50

100

150

200

250

La
te
nc

y
(μ
s/
lin

k)

a) ID to ID Query Latency

1000 2000 3000 4000 5000
Query size

La
te
nc

y
(μ
s/
lin

k)

b) URL to URL Query Latency

TSHS SHS+Filter HBase

Fig. 12: Latency of different batch query sizes using the
indexed dataset Small_GA.

• Matrix density independence. We present that the matrix
density does not affect both latency and scalability by
using our approach. For details, we choose to experiment
with a particular query batch Q (Eq. 12) to show the
stability of the latency, regardless of the temporal matrix
densities (Sec. IV-C). Query batch Q is built by selecting
URLs from Qd (with d = {0, 0.1, ..., 0.9}) with more
than 30M captures.

Qd = {c|d ≤ pc ≤ d+ 0.1} (12)

Fig. 13 shows that the latency of our system depends
less on matrix density than on the total number of links
in the result. The independence is explainable since in
the case the result has a large number of links, its size
is proportionally large. Moreover, sending a large size of
data at once may reduce network overhead among servers,
which also leads to reducing the latency.

• Temporal data independence of enhanced data structure
on F T and BT . We prove that the latency of our
approach only depends on the number of servers and
number of out-links, while the mapping location of an
URL in huge indexed data does not affect the latency.
In detail, we use two cases of two URLs: 1). Different
locations in the indexed map but have approximate num-
bers of out-links. 2). Closed locations in the indexed map
but have different numbers of out-links. Fig. 15 a) shows
that two vertices at two ends of the mapping table do not
affect latency, while b) shows the proportional execution
time with the number of out-links.

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Matrix Density

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Av
er
ag

e
Nu

m
be

r o
f O

ut
lin
ks

Latency of Different Matrix Density

2

4

6

8

Latency (μs/link)

Fig. 13: Latency of system using index from dataset German
to respond batch queries Q.

Entity root set
0

20000

40000

60000

80000

100000

To
ta

l o
ut

lin
k

a) Root set sizes

2 4 6 8
server

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (μ
s/
lin
k)

b) Latency
Scorpion
Christine Largade
Barack Obama

Fig. 14: Correlation between root set sizes acquired by entity
search from Bing as query and throughput of the system using
the index of dataset G.

Algorithm 1 Retrieve base set subgraph within given duration
from a root set

1: function GET-BASE-SET(R, ta, tb)
2: R is root set of nodes, ta and tb are timestamps
3: Given temporal graph store GT = 〈U,F T , BT 〉
4: for all v ∈ R do
5: B ← B ∪

{
〈v, x〉|∀x ∈ IF

T

v[ta,tb]

}
6: B ← B ∪

{
〈x, v〉|∀x ∈ IB

T

v[ta,tb]

}
7: for all v ∈ nodes (B) do
8: B ← B ∪ {〈v, x〉|∀x ∈ nodes (B) ∧ x 6= n}

return B

2 4 6 8
server

100

120

140

160

180

200

220

240

260

La
te
nc
y
(μ
s)

a) Differ from position
americanet.de/
zukunftsfrage.de/

2 4 6 8
server

150

200

250

300

350

400

450

500

La
te
nc
y
(μ
s)

b) Differ from #outlinks
americanet.de/: 20 links
abendzeitung-muenchen.de/: 62 links

Fig. 15: Effectiveness of mapping locations and result size: a)
Different locations but approximate numbers of out-links. b)
Approximate locations and the approximate number of out-
links.

Algorithm 2 HITS on Temporal web graph
1: function HITS-SCORES(R, ta, tb)
2: R is root set of nodes, ta and tb are timestamps
3: B ← Get-Base-Set (R, ta, tb)
4: for all v ∈ nodes (B) do
5: H [v]← 1

|nodes(B)|
6: A [v]← 1

|nodes(B)|

7: repeat
8: for all a ∈ nodes (B) do
9: A′ (a)←

∑
(x,a)∈B H (x)

10: for all h ∈ nodes (B) do
11: H ′ (h)←

∑
(h,x)∈B A (x)

12: for all v ∈ nodes (B) do
13: H (v)← 1

‖H′‖2
H ′ (v)

14: A (v)← 1
‖A′‖2

A′ (v)

15: until H and A converge return {aut, hub}

Algorithm 3 SALSA Authority on Temporal web graph
1: function SALSA-AUTHORITY-SCORES(R, ta, tb)
2: R is root set of nodes, ta and tb are timestamps
3: B ← Get-Base-Set (R, ta, tb)
4: BA ← set nodes ∈ B which have in-links
5: for all v ∈ nodes (B) do

6: H [v] =

{
1

|BA| if v ∈ BA

0 otherwise
7: repeat
8: for all a ∈ BA do
9: A′ (a) =

∑
(x,a)∈B

∑
(x,w)∈B

A(w)
out(x)in(w)

10: for all v ∈ BA do
11: A (v) = A′ (v)

12: until A converge
13: return A

F. Practicality experiment
Intensive simulation context. We use 1) Merge queries

(Sec. IV-E) to merge all revisions of a temporal subgraph of
graph German within duration [ta, tb] into a static subgraph.
The queries are 15 entity search results of the popular people,
locations, and organizations on live Bing. 2) These search
results are then used as root sets of HITS and SALSA, varying
from 201 - 311 URLs(vertices). 3) We track the execution
time of 50 iterations of both algorithms over the indexed
German dataset. We then repeat this experiment with SHS
over the static version of German dataset. It is worth notice
that when using SHS, step 1) is unnecessary. Fig. 16 shows two
performances of SHS and our approach. The data show that
the overhead for time dimension processing in our approach
is slightly higher than that of SHS, but acceptable.

TABLE IV: Detailed statistics of the system using dataset G
during the processing of temporal HITS and SALSA

Property Values
Files’ size (GB) 95 - 250
Memory consumption (GB) 34 - 105
Get-Base-Set duration (ms) 532 - 1530
HITS duration (ms) 130 - 407
SALSA-Authority-Score duration (ms) 92− 430

SHS Our approach
100

150

200

250

300

350

400

La
te

nc
y

(μ
)

Running time of HITS

SHS Our approach

100

150

200

250

300

350

400

Running time of SALSA

Fig. 16: Comparison of the results of our approach and SHS
over dataset G to run HITS and SALSA.

The root sets are then sent to the Alg. 2 and Alg. 3 as
input root sets. Fig. 14 shows the performance results of these
algorithms using the input data, whilst Tab. IV shows the over-
all statistics of the experiments on dataset G. Obviously, the
latency of a small result set slightly increases when the index
data spans on more servers. However, it shows the contrary
for the latency of the large result. This behavior is explainable
that with the small result, the network communication can be
overhead for throughput of each individual link in the result.

VII. CONCLUSION AND DISCUSSION

In this paper, we presented a novel approach to efficiently
manage temporal web graphs in terms of scalability and
latency. The measured latency of the query retrieval in our
solution varies from a few to several hundred microseconds,
which satisfy the most critical requirement for many on-the-fly
temporal web graph algorithms. Our experiments showed that
the latency of the retrieving phase outperforms the baselines
by speeding up at least 5 times. Moreover, our enhancement
on the SHS indexing workflow can significantly reduce the
time cost for indexing compared to that of SHS.

The system has few technical limitations, which could be
good motivation for future improvement. We currently handle
a maximum of up to 32 servers, while there is room to expand
the system to 128 servers. On the other hand, the partitioning
process is currently running on Hadoop, thus making the
system more complicated. Parallelizing and integrating the
partitioning method with its client are also a possible future
task.

REFERENCES

[1] P. Boldi and S. Vigna. 2004. TheWebgraph Framework I: Compression
Techniques. In Proc. 13th WWW (WWW ’04). ACM, New York, NY,
USA, 595–602. https://doi.org/10.1145/988672.988752

[2] Marc Najork. 2009. The Scalable Hyperlink Store. In Proc. 20th
HT (HT ’09). ACM, New York, NY, USA, Article 1, 10 pages.
https://doi.org/10.1145/1557914.1557933

[3] G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, I.
Horn, N. Leiser, and G. Czajkowski. 2010. Pregel: A System
for Large-scale Graph Processing. In Proc. 2010 ACM SIG-
MOD (SIGMOD ’10). ACM, New York, NY, USA, 135–146.
https://doi.org/10.1145/1807167.1807184

[4] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin,
Aapo Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab:
a framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment 5, 8 (2012), 716–727.
doi:10.14778/2212351.2212354

[5] A. Roy, I. Mihailovic, and W. Zwaenepoel. 2013. X-Stream: Edge-
centric Graph Processing Using Streaming Partitions. In Proc.
24th SOSP (SOSP ’13). ACM, New York, NY, USA, 472–488.
https://doi.org/10.1145/2517349.2522740

[6] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W.
Chen, and E. Chen. 2014. Chronos: A Graph Engine for Temporal Graph
Analysis. In Proc. 9th EuroSys (EuroSys ’14). ACM, New York, NY,
USA, Article 2, 14 pages. https://doi.org/10.1145/2592798.2592799.

[7] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Li-
dong Zhou, Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen.
2015. ImmortalGraph: A System for Storage and Analysis of Temporal
Graphs. ACM Trans. Storage 11, 3, Article 14 (July 2015), 34 pages.
DOI:https://doi.org/10.1145/2700302

[8] Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen, Sean R. Spillane,
Jayadevan Vijayan, Jeong-Hyon Hwang, et al., "The g* graph database:
Efficiently managing large distributed dynamic graphs", Distrib. Parallel
Databases, vol. 33, no. 4, pp. 479-514, December 2015.

[9] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos. 2015. Time-
Crunch: Interpretable Dynamic Graph Summarization. In Proc. 21th
ACM SIGKDD (KDD ’15). ACM, New York, NY, USA, 1055–1064.
https://doi.org/10.1145/2783258.2783321

[10] A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, and I. Stoica. 2017.
ZipG: A Memory-efficient Graph Store for Interactive Queries. In Proc.
2017 ACM SIGMOD (SIGMOD ’17). ACM, New York, NY, USA,
1149–1164. https://doi.org/10.1145/3035918.3064012

[11] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai. 2017. Fast Compu-
tation of Dense Temporal Subgraphs. In IEEE 33rd ICDE. 361–372.
https://doi.org/10.1109/ICDE.2017.95

[12] Boldi, P., Santini, M., and Vigna, S. (2008). A large
time-aware web graph. SIGIR Forum, 42, 33–38. URL:
http://doi.acm.org/10.1145/1480506.1480511.

[13] Cambazoglu, B. B., and Baeza-Yates, R. (2015). Scalability Challenges
in Web Search Engines. Morgan & Claypool Publishers.

[14] S. Sahu, S. S. J. L. M. T. O., A. Mhedhbi (2018). The ubiquity of large
graphs and surprising challenges of graph processing. Proc. VLDB En-
dow., 10 ,1981–1984. URL: https://doi.org/10.14778/3137765.3137825.
doi:10.14778/3137765.3137825.

[15] Vo, K. D., Tran, T., Nguyen, T. N., Zhu, X., and Nejdl, W. (2016). Can
we find documents in web archives without knowing their contents?
In Proc. 8th ACM WebSci WebSci ’16 (pp. 173–182). New York,
NY, USA:ACM. URL: http://doi.acm.org/10.1145/2908131.2908165.
doi:10.1145/2908131.2908165.

[16] Kanhabua N., Kemkes P., Nejdl W., Nguyen T.N., Reis F., Tran N.K.
(2016) How to Search the Internet Archive Without Indexing It. In: Fuhr
N., Kovács L., Risse T., Nejdl W. (eds) Research and Advanced Tech-
nology for Digital Libraries. TPDL 2016. Lecture Notes in Computer
Science, vol 9819. Springer, Cham. https://doi.org/10.1007/978-3-319-
43997-6_12

[17] Fang, Y., Cheng, R., Li, X., Luo, S., and Hu, J. (2017). Effec-
tive community search over large spatial graphs. Proc. VLDB En-
dow., 10 , 709–720. URL: https://doi.org/10.14778/3055330.3055337.
doi:10.14778/ 3055330.3055337.

[18] Kabiljo, I., Karrer, B., Pundir, M., Pupyrev, S., and
Shalita, A. (2017). Social hash partitioner: A scalable
distributed hypergraph partitioner. Proc. VLDB Endow., 10 ,
1418–1429. URL: https://doi.org/10.14778/3137628.3137650.
doi:10.14778/3137628.3137650.

[19] Lai, L., Qin, L., Lin, X., Zhang, Y., Chang, L., and Yang, S.
(2016). Scalable distributed subgraph enumeration. Proc. VLDB En-
dow., 10 , 217–228. URL: https://doi.org/10.14778/3021924.3021937.
doi:10.14778/ 3021924.3021937.

[20] Mai, S. T., Dieu, M. S., Assent, I., Jacobsen, J., Kristensen, J.,
and Birk, M.(2017). Scalable and interactive graph clustering al-

gorithm on multicore CPUs. In IEEE 33rd ICDE (pp. 349–360).
doi:10.1109/ICDE.2017.94.

[21] Zou, Z., Li, F., Li, J., and Li, Y. (2017). Scalable processing of massive
uncertain graph data: A simultaneous processing approach. In IEEE 33rd
ICDE (pp.183–186). doi:10.1109/ICDE.2017.70.

[22] M. Nelson, S. Radhakrishnan and C. N. Sekharan, "Algorithms on
Compressed Time-Evolving Graphs," 2019 IEEE International Confer-
ence on Big Data (Big Data), 2019, pp. 227-232, doi: 10.1109/Big-
Data47090.2019.9005704.

[23] Claude, F., and Navarro, G. (2010). Fast and compact web
graph representations. ACM Trans. Web, 4 , 16:1–16:31. URL:
http://doi.acm.org/10.1145/1841909.1841913.

[24] Brisaboa, N. R., Ladra, S., and Navarro, G. (2009). K2-trees
for compact web graph representation. In Proc. 16th SPIRE
SPIRE ’09 (pp. 18–30). Berlin, Heidelberg: Springer-Verlag. URL:
http://dx.doi.org/10.1007/978-3-642-03784-9_3.

[25] Li, L., Hua, W., Du, X., and Zhou, X. (2017). Minimal on-road time
route scheduling on time-dependent graphs. Proc. VLDB Endow., 10,
1274–1285. URL: https://doi.org/10.14778/3137628.3137638.

[26] Najork, M. A. (2007). Comparing the effectiveness of hits and salsa. In
Proc. 16th CIKM CIKM ’07 (pp. 157–164). New York, NY, USA:ACM.
URL: http://doi.acm.org/10.1145/1321440.1321465.

[27] Najork, M. A., Zaragoza, H., and Taylor, M. J. (2007). Hits
on the web: How does it compare? In Proc. 30th SIGIR SI-
GIR ’07 (pp. 471–478). New York, NY, USA: ACM. URL:
http://doi.acm.org/10.1145/1277741.1277823.

[28] Kruse, S., Hahn, D., Walter, M., and Naumann, F. (2017). Metacrate:
Organize and analyze millions of data profiles. In Proc. ACM CIKM
CIKM ’17 (pp.2483–2486). New York, NY, USA: ACM. URL:
http://doi.acm.org/10.1145/3132847.3133180.

[29] Buehrer, G., and Chellapilla, K. (2008). A scalable pattern mining
approach to web graph compression with communities. In Proc. 2008
WSDM (pp. 95–106). New York, NY, USA: ACM. URL: http://doi.acm.
org/10.1145/1341531.1341547.

[30] Moffitt, V. Z., and Stoyanovich, J. (2016). Towards a distributed infras-
tructure for evolving graph analytics. In Proc. 25th WWW WWW ’16
Companion(pp. 843–848). Republic and Canton of Geneva, Switzerland.
URL: https://doi.org/10.1145/2872518.2889290.

[31] Meimaris, M., Papastefanatos, G., Mamoulis, N., and Anagnos-
topoulos, I. (2017). Extended characteristic sets: Graph indexing
for sparql query optimization. In IEEE 33rd ICDE (pp. 497–508).
doi:10.1109/ICDE.2017.106.

[32] Berberich, K., Bedathur, S., Neumann, T., and Weikum, G. (2007). A
time machine for text search. In Proc. 30th ACM SIGIR SIGIR ’07 (pp.
519–526). New York, NY, USA: Association for Computing Machinery.
URL: https://doi.org/10.1145/1277741.1277831.

[33] Silu Huang, James Cheng and Huanhuan Wu, "Temporal graph
traversals: Definitions algorithms and applications", arXiv preprint
arXiv:1401.1919, 2014.

[34] Huacheng Yu, "An improved combinatorial algorithm for boolean matrix
multiplication", International Colloquium on Automata Languages and
Programming, pp. 1094-1105, 2015.

[35] Holzmann, H., Nejdl, W., and Anand, A. (2017). Exploring web
archives through temporal anchor texts. In Proc. 2017 WebSci
WebSci ’17 (pp. 289–298). New York, NY, USA: ACM. URL:
http://doi.acm.org/10.1145/3091478.3091500.

[36] Iosup, A., Hegeman, T., Ngai, W. L., Heldens, S., Prat-Pérez, A.,
Manhardto, T., Chafio, H., Capota, M., Sundaram, N., Anderson, M.,
Tanase, I. G., Xia, Y., Nai, L., and Boncz, P. (2016). Ldbc graph-
alytics: A benchmark for large-scale graph analysis on parallel and
distributed platforms. Proc. VLDB Endow., 9 , 1317–1328. URL:
https://doi.org/10.14778/3007263.3007270.

	Introduction
	Related Work
	Static graph
	Temporal graph
	Web graph processing

	Scalable Hyperlink Store - SHS
	Approach
	Temporal model as bit matrix
	Temporal model as adjacent pairs
	Temporal web graph store data structure
	Skip pointer list
	Temporal neighbors retrieval model
	Implementation

	Complexity Analysis
	Experimental Evaluation
	Evaluation method
	Dataset
	Baselines
	Experiment setup
	Functional experiment results
	Practicality experiment

	Conclusion and Discussion
	References

